Как видим, кибернетический подход к оценке принципов самоорганизации живых систем не вполне близок к представлениям, защищаемым ГДБ.
Во-первых, согласно ГДБ сигналы и элементы информационного потока представляются фактически идентичными понятиями, а во-вторых, концепция предетерминированности даже не обсуждает кибернетический смысл и саму возможность активной ретрансляционной переработки (преобразования) информации, представленной белковой молекулой, в «некотором центральном устройстве». Роль белковой молекулы, таким образом, рассматривается, в лучшем случае, наряду с любым сигналом, получаемой от источников первичной информации (сенсорных рецепторов) только лишь как приказ для выполнения того или иного действия.
Формальным аргументом в пользу такого представления является действительно существующий механизм взаимодействия с ДНК белков - регуляторов активности ядерных генов.
В значительной степени и другое, не вполне корректное представление современной биологии о значении и роли белков в жизнедеятельности организмов, как бы оправдывает эту точку зрения. Речь идет об утверждении, что поступающие с пищей белковые молекулы распадаются до аминокислот в процессе пищеварения.
В действительности, сложные организмы имеют не только средства снижения плотности информационного потока, но и средства защиты поступающих в организм, в том числе и с пищей, информационных программ.
В желудочно-кишечном тракте ферменты, главным образом, поджелудочной железы, а в кровотоке – лизосомальные ферменты лейкоцитов, разрушают целостность белковых молекул до фрагментов, состоящих из небольшого количества аминокислот – пяти, шести и меньше, которые уже не способны выступать в качестве матриц программ.
В качестве «защитников» программ, заключенных в структуре чужеродных белков, выступают особые клетки, как свободно циркулирующие в крови, так и фиксированные в тканях у «входных ворот» организма, всегда открытых для информации - в стенках кишечника и дыхательного тракта. Им, кстати, огромную роль в иммунитете отводил отечественный ученый Илья Мечников. Называют эти клетки «макрофагами».
«Ранее, создатель статистической теории информации К. Шеннон обобщил результат Хартли и его предшественников. Его труды явились ответом на бурное развитие в середине века средств связи: радио, телефона, телеграфа, телевидения. Теория информации Шеннона позволяла ставить и решать задачи об оптимальном кодировании передаваемых сигналов с целью повышения пропускной способности каналов связи, подсказывала пути борьбы с помехами на линиях и т.д.
В работах Хартли и Шеннона информация возникает перед нами лишь в своей внешней оболочке, которая представлена отношениями сигналов, знаков, сообщений друг к другу - синтаксическими отношениями. Количественная мера Хартли-Шеннона не претендует на оценку содержательной (семантической) или ценностной, полезной (прагматической) стороны передаваемого сообщения». /Пархомчук А.А., контрольная работа «Новое информационное общество» (по курсу «Современный уровень системного подхода к Природе и обществу»), М.1998, Гос. унив. Управления Института Национальной и мировой экономики/.
Применительно к выбранной нами конкретной модели - «ДНК – носитель информации», согласно Главной Догме Биологии, элементами, представляющими собой готовые программы, являются фрагменты ДНК и РНК, имеющие чужеродное (гетерогенное) для рассматриваемой системы происхождение. Они-то и должны рассматриваться в качестве собственно элементов информационного потока.
В то же время, существует огромная группа так называемых генотропных факторов. К таковым следует относить как соединения, имеющие способность химически взаимодействовать с ДНК, так и физические факторы, способные нарушать комплементарность либо целостность спаренных цепей ДНК. Они, конечно, являются также знаками, отражающими состояние среды, в которой находится рассматриваемая система, но, поскольку все-таки не представляют собой последовательность оснований, им следует отводить лишь сигнальную функцию.
Таким образом, информационный поток, рассматриваемый ГДБ на уровне отдельной клетки, имеет две составляющие – собственно элементы информационного потока (ДНК, РНК) и генотропные факторы среды, выполняющие сигнальную функцию.
Программы, закодированные в структуре ДНК, в конечном итоге превращаются в белковые молекулы, первичная структура которых также состоит из последовательности «букв», но букв уже другого рода, а именно – аминокислот.
С этого момента – появления на арене жизни вновь синтезированной белковой молекулы, и начинается проблема корректности Главной Биологической Догмы. Согласно последней, этот белок следует определять как генотропный (т.е. имеющий сродство к геному, точнее, к ДНК как определенной физико-химической структуре) фактор, каковым он, конечно, и является по своей первичной структуре. Но его конечная биологически активная форма определяется четвертичной структурой – продуктом, пространственная конфигурация которого весьма далека от исходной формы. Соответственно, и активными группами на поверхности белка оказываются совсем не те последовательности аминокислот, которые выстраивались на начальных стадиях синтеза белковой молекулы, но именно сочетание аминокислот, представленных в таких активных группах на поверхности молекулы определяет функциональную значимость того или другого белка.
Перейти на страницу: 1 2 3 4 5 6 7
|